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Abstract. It is well-known that an n-tuple (n ≥ 3) of commuting contractions does not
posses an isometric dilation, in general. Considering a class of n-tuple of commuting con-
tractions satisfying certain positivity assumption, we construct their isometric dilations and
consequently establish their von Neumann inequality. The positivity assumption is related
to Brehmer positivity and motivated by the study of isometric dilations of operator tuples
in [4].

1. Introduction

Starting point of the dilation theory is the result of Sz.-Nagy which says that a Hilbert space
contraction always dilates to an isometry acting on a bigger Hilbert space. More precisely,
Sz.-Nagy proved the following.

Theorem 1.1 ([19]). Let T be a contraction on a Hilbert space H. Then there exists a Hilbert
space K (K ⊃ H) and an isometry V ∈ B(K) such that

T k = PHV
k|H

for all k ∈ Z+, where PH denotes the orthogonal projection in B(K) with range H.

This result is the cornerstone of the extremely useful and extensive theory of Sz.-Nagy and
Foias on single contractions [19]. Ando [3], generalizing Sz.-Nagy’s dilation, constructed
isometric dilations for pairs of commuting contractions. In other words, he constructed a
pair of commuting isometries (V1, V2) on K ⊇ H corresponding to each pair of commuting
contractions (T1, T2) on H such that

Tm1
1 Tm2

2 = PHV
m1

1 V m2
2 |H

for all (m1,m2) ∈ Z2
+. Producing some counterexamples Parrott [21] showed that for n ≥ 3,

n-tuples of commuting contractions do not posses isometric dilations in general. This leads
us to study n-tuples (n ≥ 3) of commuting contractions more closely and identify n-tuples
of commuting contractions which posses isometric dilations. For the rest of this article, we
assume that n ≥ 3. We denote by T n(H) the set of all n-tuple of commuting contractions,
that is

T n(H) = {(T1, . . . , Tn) : Ti ∈ B(H), ‖Ti‖ ≤ 1, TiTj = TjTi, 1 ≤ i, j ≤ n},
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and for T = (T1, . . . , Tn) ∈ T n(H) and k = (k1, . . . , kn) ∈ Zn
+ we define T k = T k1

1 · · ·T kn
n .

For Hilbert spaces H and K with K ⊃ H, an n-tuple of commuting isometries (respectively
unitaries) V ∈ T n(K) is called an isometric dilation (respectively unitary dilation) of T ∈
T n(H) if

T k = PHV
k|H

for all k ∈ Zn
+. There is a growing literature exploring the interplay between dilation and

positivity, and several classes of operator tuples under certain positivity assumptions are
known to have isometric dilations. See [1], [7], [14], [20], [10], [11], [15], [12], [13], [4] and [5] for
more details in the polydisc setup. The one which is relevant for us is the dilation of operator
tuples under Brehmer positivity [7]. An n-tuple of commuting contraction T ∈ T n(H) is said
to satisfy Brehmer positivity if ∑

F⊂G

(−1)|F |TFT
∗
F ≥ 0

for all G ⊂ {1, . . . , n}, where TF := Tn1 · · ·Tnk
for any F = {n1, . . . , nk} ⊂ {1, . . . , n} and by

convention T∅ = IH. We denote by Bn(H) the class of n-tuples of commuting contractions
on H satisfying Brehmer positivity, that is

Bn(H) := {T ∈ T n(H) : T satisfies Brehmer positivity}.
It is clear from the definition that if T ∈ Bn(H) then

(Tn1 , . . . , Tnk
) ∈ Bk(H)

for any non-empty subset {n1, . . . , nk} of {1, . . . , n}. It has been shown in [7] that every
T ∈ Bn(H) possesses isometric dilation (also see [19]). In fact, more stronger result is true.
Namely, T ∈ Bn(H) if and only if T has a ∗-regular unitary dilation U , that is

Tα+T ∗α− = PHU
∗α−Uα+ |H

for all α ∈ Zn, where α+ = (α+
1 , . . . , α

+
n ),α− = (α−1 , . . . , α

−
n ) ∈ Zn

+ and α+
i := max{αi, 0},

α−i := max{−αi, 0}. The aim of this article is to exhibit a class of n-tuple of commuting
contractions having isometric dilations so that the class is larger than the class of n-tuples of
commuting contractions satisfying Brehmer positivity. To describe the class of operator tuples
succinctly, we adopt the following notation. For T = (T1, . . . , Tn) ∈ T n(H) and 1 ≤ i ≤ n,
we define

T̂i := (T1, . . . , Ti−1, Ti+1, . . . , Tn) ∈ T n−1(H),

the (n − 1)-tuple obtained from T by deleting Ti. The class we consider in this article is
denoted by Bn

p,q(H) for some 1 ≤ p < q ≤ n and defined as

Bn
p,q(H) := {T = (T1, . . . , Tn) ∈ T n(H) : T̂p, T̂q ∈ Bn−1(H)}.

From the definition it is clear that Bn(H) ⊂ Bn
p,q(H) and the containment can be shown to

be proper. By means of an explicit construction, we show that T ∈ Bn
p,q(H) if and only if

T has an isometric dilation V such that V̂p and V̂q are ∗-regular isometric dilation of T̂p and

T̂q, respectively. For the base case (n = 3), the existence of isometric dilations for B3
1,3(H) is

obtained by Gasper and Suciu in [15, Theorem 12] . However our proof, for this particular
case, is completely different than that of [15] and is based on an explicit construction of
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dilating isometries. The present consideration is also motivated by [4] where the authors
considered the following class of operator tuples

(1.1) T n
p,q := {T ∈ T n(H) : T̂p and T̂q satisfy Szegö positivity and T̂q is pure}

and found their isometric dilations explicitly. We say that T ∈ T n(H) satisfies Szegö positivity
if ∑

F⊂{1,...,n}

(−1)|F |TFT
∗
F ≥ 0,

and we say T is pure if T ∗mi h→ 0 as m→∞ for all h ∈ H and i = 1, . . . , n. It is easy to see
that if T ∈ T n(H) is pure and satisfies Szegö positivity then it satisfies Brehmer positivity.
Thus it is evident that if T ∈ T n

p,q(H) and T is pure then T ∈ Bn
p,q(H). From this point of

view, the present work is also a generalization of [4].
An added benefit of this consideration is the von Neumann inequality for the class Bn

p,q(H).
If T ∈ T n(H) has an isometric dilation, then it is immediate that T satisfies the von Neumann
inequality, that is for all p ∈ C[z1, . . . , zn]

‖p(T )‖ ≤ supz∈Dn|p(z)|,

where Dn is the open unit n-polydisc in Cn. Thus, as an immediate consequence of our
isometric dilations, we obtain that each tuple in Bn

p,q(H) satisfies von Neumann inequality. It
is worth mentioning here that von Neumann inequality does not hold in general for n-tuple
of commuting contractions (see [24] and [9]). More details on von Neumann inequality for
n-tuple of commuting contractions can be found in [8], [16], [17], [18] and [22].

Rest of the paper is organized as follows. In the next section we develop some background
material and state some known results which are relevant in the present context. Section 3
deals with isometric dilations and von Neumann inequality for the class Bn

p,q(H).

2. Preliminaries

In most of the cases, isometric dilations of tuple of commuting contractions are isometric
co-extensions. However, we use co-extension as an intermediate step to obtain isometric
dilations in the present context. Let H and K be Hilbert spaces, and let T ∈ T n(H) and V
be an n-tuple of contractions on K. We say that V is a co-extension of T if there exists an
isometry Π : H → K such that

(2.1) ΠT ∗i = V ∗i Π,

for all i = 1, . . . , n. In addition, if

K = span{V kh : k ∈ Zn
+, h ∈ ran Π},

then we say V is a minimal co-extension of T . We warn the reader here that we do not require
V to be a commuting tuple. Let Q = ran Π. Then, by equation (2.1),

ΠTiΠ
∗ = (ΠTiΠ

∗)(ΠΠ∗) = (ΠΠ∗Vi)(ΠΠ∗) = PQVi|Q.
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This implies that (PQV1|Q, . . . , PQVn|Q) is a commuting tuple of contractions even if V is
not an commuting tuple of contractions. Moreover, (T1, . . . , Tn) is unitary equivalent to
(PQV1|Q, . . . , PQVn|Q). Also,

(PQVi|Q)∗ = ΠT ∗i Π∗ = V ∗i ΠΠ∗ = V ∗i |Q,

which implies, (V1, . . . , Vn) is a co-extension of (PQV1|Q, . . . , PQVn|Q) (∼= (T1, . . . , Tn)).
For a Hilbert space E , the E-valued Hardy space over Dn is denoted by H2

E(Dn) and defined
as the space of all E-valued analytic functions f =

∑
k∈Zn

+
akz

k (ak ∈ E) on Dn such that∑
k∈Zn

+

‖ak‖2 <∞.

The space H2
E(Dn) is a reproducing kernel Hilbert space with kernel SnIE where Sn is the

Szegö kernel on the polydisc Dn given by

Sn(z,w) =
n∏

i=1

(1− ziw̄i)
−1 (z,w ∈ Dn).

The n-tuple of shifts (Mz1 , . . . ,Mzn) on H2
E(Dn) is defined by

(Mzif)(w) = wif(w) ( w ∈ Dn),

for all i = 1, . . . , n and is a tuple of commuting isometries. For T ∈ T n(H), we say T ∈ T n(H)
satisfies Szegö positivity if S−1

n (T, T ∗) ≥ 0, where

S−1
n (T, T ∗) :=

∑
F⊂{1,...,n}

(−1)|F |TFT
∗
F .

In such a case, we define the defect operator and the defect spaces as

DT := S−1
n (T, T ∗)1/2 and DT := ran S−1

n (T, T ∗),

respectively. The map Π : H → H2
DT

(Dn) defined by

(2.2) (Πh)(z) =
∑
k∈Zn

+

zk ⊗DTT
∗kh (z ∈ Dn)

is called the canonical dilation map corresponding to a Szegö tuple T ∈ T n(H) and it satisfies

ΠT ∗i = M∗
zi

Π

for all i = 1, . . . , n, and

‖Πh‖2 = lim
k→∞

∑
F⊂{1,...,n}

(−1)|F |‖T ∗kF h‖2

for all h ∈ H. In addition, if T is pure then by the above identity Π is an isometry and therefore
the n-tuple of shift (Mz1 , . . . ,Mzn) on H2

DT
(Dn) is a co-extension of T . In particular, a pure

Szegö n-tuple T dilates to the n-tuple of shifts on H2
DT

(Dn) (see [10] and [20]). A pure Szegö
tuple T ∈ T n(H) is also a member of Bn(H), that is T satisfies Brehmer positivity. Thus
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the class Bn(H) is larger than the class of pure and Szegö n-tuples on H. Recall that an
isometric dilation V ∈ T n(K) of T ∈ T n(H) is ∗-regular (respectively regular) if it satisfies

PHV
∗α−V α+|H = Tα+T ∗α− (α ∈ Zn)

or respectively,

PHV
∗α−V α+ |H = T ∗α−Tα+ (α ∈ Zn).

It is well-known that T ∈ Bn(H) if and only if T has a ∗-regular isometric dilation (see [19]).
For explicit constructions of ∗-regular isometric dilations for the class Bn(H) see [2] and [23].
Simply taking adjoint, it is evident that T ∗ ∈ Bn(H) if and only if T has a regular isometric
dilation. For example, if (V, T ) is a pair of commuting contractions on H and if V is an
isometry then (V ∗, T ∗) ∈ B2(H) and therefore (V, T ) has a regular isometric dilation. We
end the section with a lemma which will be useful for us. The lemma may be known to
experts and we are unable to find any suitable reference for it, and that is why we include a
proof. We say that an operator tuple T ∈ T n(H) is doubly commuting if TiT

∗
j = T ∗j Ti for all

1 ≤ i < j ≤ n.

Lemma 2.1. Let (W1,W2) on K be a minimal regular unitary dilation of (T1, T2) on H. Sup-
pose (S1, . . . , Sd) is a tuple of isometries on H such that (T1, S1, . . . , Sd) and (T2, S1, . . . , Sd)
are doubly commuting. Then there exists a commuting tuple of isometries (U1, . . . , Ud) on
K such that (W1,W2, U1, . . . , Ud) is an isometric dilation of the tuple (T1, T2, S1, . . . , Sd) and
that (W1, U1, . . . , Ud) and (W2, U1, . . . , Ud) are doubly commuting.

Moreover, (U1, . . . , Ud) is both an extension and a co-extension of (S1, . . . , Sd).

Proof. Let W = (W1,W2). Since W on K is the minimal unitary dilation of T = (T1, T2),

(2.3) K = span{W kh : k ∈ Z2, h ∈ H}.

For 1 ≤ i ≤ d, h1, . . . , hr ∈ H and k1, . . . ,kr ∈ Z2, we have∥∥ r∑
l=1

W klSihl
∥∥2

=
r∑

l,m=1

〈W ∗kmW klSihl, Sihm〉

=
r∑

l,m=1

〈W ∗(kl−km)−W (kl−km)+Sihl, Sihm〉

=
r∑

l,m=1

〈T ∗(kl−km)−T (kl−km)+Sihl, Sihm〉 [by regular dilation]

=
r∑

l,m=1

〈T ∗(kl−km)−T (kl−km)+hl, hm〉, [by doubly commuting property]

and by a similar calculation we also have∥∥ r∑
l=1

W klhl
∥∥2

=
r∑

l,m=1

〈T ∗(kl−km)−T (kl−km)+hl, hm〉.
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This shows that for all h1, . . . , hr ∈ H and k1, . . . ,kr ∈ Z2,∥∥ r∑
l=1

W klSihl
∥∥2

=
∥∥ r∑

l=1

W klhl
∥∥2

for any 1 ≤ i ≤ d. Hence, by the minimality of the unitary dilation (2.3), we have isometry
Ui : K → K defined by

Ui(W
kh) = W kSih (h ∈ H,k ∈ Z2),

for all i = 1, . . . , d. It is easy to see that

Ui|H = Si, UiUj = UjUi and UiWm = WmUi

for all i, j = 1, . . . , d and m = 1, 2. Consequently, for all α ∈ Z2
+ and for all (m1, . . . ,md) ∈

Zd
+,

PHW
αUm1

1 · · ·U
md
d |H = PHW

α|H(Sm1
1 · · ·S

md
d ) = TαSm1

1 · · ·S
md
d .

Thus (W1,W2, U1, . . . , Ud) is an isometric dilation of (T1, T2, S1, . . . , Sd). It remains to show
that (U1, . . . , Ud) is a co-extension of (S1, . . . , Sd). To this end, for all h, h′ ∈ H and k ∈ Z2,

〈U∗i h,W kh′〉 = 〈h, PHW kSih
′〉 = 〈h, PHW ∗k−W k+Sih

′〉 = 〈h, T ∗k−T k+Sih
′〉, (1 ≤ i ≤ d)

and using the fact that Si doubly commutes with T , we have

〈h, T ∗k−T k+Sih
′〉 = 〈h, SiT

∗k−T k+h′〉 = 〈S∗i h, PHW ∗k−W k+h′〉 = 〈S∗i h,W kh′〉 (1 ≤ i ≤ d).

Thus, U∗i h = S∗i h, for all h ∈ H and for all i = 1, . . . , d. Hence the proof follows. �

3. Isometric dilations and von Neumann inequality for Bn
p,q(H)

The aim of this section is to construct isometric dilations for the class Bn
p,q(H) for some

1 ≤ p < q ≤ n. For simplicity we fix p = 1, q = n and construct isometric dilations for the
class Bn

1,n(H). This simplification is harmless as by a suitable rearrangement any operator
tuple in Bn

p,q(H) can be viewed as a member of Bn
1,n(H). First we introduce some notations

which will be followed throughout the paper.
For T ∈ T n(H) and for each non-empty order subset G = {j1, . . . , jr} of {1, . . . , n}, we

define

T (G) := (Tj1 , . . . , Tjr).

With the above notation, if T ∈ Bn(H) then T (G) ∈ B|G|(H) for any non-empty subset G
of {1, . . . , n}, and therefore we define the corresponding defect operator and defect spaces as

DT,G := S−1
r (T (G), T (G)∗)1/2 =

(∑
F⊂G

(−1)|F |TFT
∗
F

)1/2

and DT,G := ranDT,G.

For T ∈ T n(H), we also set

T̂1n := (T1Tn, T2, . . . , Tn−1),

the (n−1)-tuple in T n−1(H) obtained from T by removing Tn and replacing T1 by T1Tn. Next

we observe a crucial property of T̂1n when T ∈ Bn
1,n(H). A similar result is also observed

in [4, Lemma 5.1] in the context of Szegö positivity.
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Lemma 3.1. Let T = (T1, . . . , Tn) ∈ Bn
1,n(H). Then T̂1n = (T1Tn, T2, . . . , Tn−1) ∈ Bn−1(H).

Proof. First note that for G ⊂ {1, . . . , n− 1} with 1 /∈ G,∑
F⊂G

(−1)|F |(T̂1n)F (T̂1n)∗F =
∑
F⊂G

(−1)|F |(T̂n)F (T̂n)∗F ≥ 0.

On the other hand, for G ⊂ {1, . . . , n− 1} with 1 ∈ G, it can be checked that

(3.1)
∑
F⊂G

(−1)|F |(T̂1n)F (T̂1n)∗F =
∑
F⊂G

(−1)|F |(T̂1)F (T̂1)∗F +Tn
(∑
F⊂G

(−1)|F |(T̂n)F (T̂n)∗F
)
T ∗n ≥ 0.

This completes the proof. �

The key observation in the above lemma is the identity (3.1) which we use repeatedly in
this article. We rewrite the identity in terms of defect operators as follows. For T ∈ Bn

1,n(H)
and G ⊂ {1, . . . , n− 1} with 1 ∈ G we have

(3.2) D2
T̂n,G

+ T1D
2
T̂1,G

T ∗1 = D2
T̂1n,G

= D2
T̂1,G

+ TnD
2
T̂n,G

T ∗n .

By the above lemma, if T ∈ Bn
1,n(H) then T̂1n ∈ Bn−1(H) and therefore for all G =

{j1, . . . , j|G|} ⊂ {1, . . . , n − 1}, T̂1n(G) ∈ B|G|(H). We denote the corresponding canoni-

cal dilation map, as in (2.2), of T̂1n(G) by ΠG, that is ΠG : H → H2
DT̂1n,G

(D|G|) defined

by

(3.3) (ΠGh)(z) =
∑
k∈Z|G|+

zk ⊗DT̂1n,G
T̂1n(G)∗kh (h ∈ H, z ∈ D|G|)

such that

ΠGT
∗
ji

= M∗
zi

ΠG

for all i = 1, . . . , |G|. In particular if G = {1 = j1, . . . , j|G|}, then

ΠGT
∗
1 T
∗
n = M∗

z1
ΠG and ΠGT

∗
ji

= M∗
zi

ΠG

for all i = 2, . . . , |G|. The next lemma will be the key to factorize Mz1 further as a product
of MΦ and MΨ so that we can split the first intertwining relation above into

ΠGT
∗
1 = M∗

ΦΠG and ΠGT
∗
n = M∗

ΨΠG

where Φ and Ψ are inner multipliers on D|G| with their product being z1. Such a pair of
multipliers (Φ,Ψ) is known as BCL pair and it turns out that the only way one can factorize
a shift is through BCL pair (see [6] and see [13] for its counterpart in the context of pure
contractions).

Lemma 3.2. Let T = (T1 = RS, T2, . . . , Tn) ∈ Bn(H) for some commuting contractions
R, S ∈ B(H) and let G ⊂ {1, . . . , n}. Suppose that there exist bounded operators F1 and F2

on H, Hilbert spaces F1 and F2 with Fi ⊇ ranFi (i = 1, 2), a Hilbert space E, an isometry
ΓG : DT,G → E and unitaries

Ui =

[
Ai Bi

Ci 0

]
: E ⊕ Fi → E ⊕Fi (i = 1, 2)
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satisfying

U1(ΓGDT,Gh, F1R
∗S∗h) = (ΓGDT,GR

∗h, F1h)

and

U2(ΓGDT,Gh, F2R
∗S∗h) = (ΓGDT,GS

∗h, F2h)

for all h ∈ H, then

(I ⊗ ΓG)ΠGR
∗ = M∗

Φ1
(I ⊗ ΓG)ΠG and (I ⊗ ΓG)ΠGS

∗ = M∗
Φ2

(I ⊗ ΓG)ΠG

where Φi(z) = A∗i + z1C
∗
i B
∗
i (z ∈ D|G|) is the transfer function of the unitary U∗i for all

i = 1, 2 and ΠG is the canonical dilation map of T (G), as in (3.3).

Proof. Because of the symmetric roles of R and S, we only prove that (I ⊗ ΓG)ΠGR
∗ =

M∗
Φ1

(I ⊗ ΓG)ΠG. Let l ∈ Z|G|+ and η ∈ E . Then for all h ∈ H

〈(I ⊗ ΓG)ΠGR
∗h, zl ⊗ η〉 = 〈(I ⊗ ΓG)

∑
k∈Z|G|+

zk ⊗DT,GT (G)∗kR∗h, zl ⊗ η〉

= 〈ΓGDT,GT (G)∗lR∗h, η〉.

Since

U1(ΓGDT,Gh, F1R
∗S∗h) = (ΓGDT,GR

∗h, F1h), (h ∈ H)

we have

ΓGDT,GR
∗ = A1ΓGDT,G +B1F1R

∗S∗, and F1 = C1ΓGDT,G.

Combining these together, we get

ΓGDT,GR
∗ = A1ΓGDT,G +B1C1ΓGDT,GR

∗S∗.

This implies that

〈M∗
Φ1

(I ⊗ ΓG)ΠGh, z
l ⊗ η〉 = 〈(I ⊗ ΓG)ΠGh,MΦ1(zl ⊗ η)〉

= 〈(I ⊗ ΓG)
∑
k∈Z|G|+

zk ⊗DT,GT (G)∗kh, (A∗1 + z1C
∗
1B
∗
1)(zl ⊗ η)〉

= 〈(A1ΓGDT,G +B1C1ΓGDT,GR
∗S∗)T (G)∗lh, η〉

= 〈ΓGDT,GT (G)∗lR∗h, η〉.

Thus (I ⊗ ΓG)ΠGR
∗ = M∗

Φ1
(I ⊗ ΓG)ΠG. This completes the proof.

�

Our construction of isometric dilations for tuples in Bn
1,n(H) relies on getting co-extensions

of the tuples first. On the other hand, construction of these co-extensions is build upon
obtaining certain operator tuples corresponding to each G ⊂ {1, . . . , n− 1}. In the next two
lemmas we construct these operator tuples. The first lemma deals with the case when 1 ∈ G.
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Lemma 3.3. Let T = (T1, . . . , Tn) ∈ Bn
1,n(H). Let G = {m1, . . . ,mr} ⊂ {1, . . . , n− 1} with

1 = m1 ∈ G and set Ḡ = {1, . . . , n− 1}rG. Suppose that Tj is a co-isometry for all j ∈ Ḡ
and ΠG be as in (3.3). Then there exist a Hilbert space HG, an isometry ΓG : DT̂1n,G

→ HG

and n-tuple of contractions V = (V1, . . . , Vn) on H2
HG

(Dr) such that V̂1 and V̂n are doubly
commuting and

(I ⊗ ΓG)ΠGT
∗
i = V ∗i (I ⊗ ΓG)ΠG, (1 ≤ i ≤ n)

where ΠG : H → H2
DT̂1n,G

(Dr) is the dilation map of T̂1n(G) and

V1 = PH2
HG

(Dr)MΦ|H2
HG

(Dr), Vn = PH2
HG

(Dr)MΨ|H2
HG

(Dr), Vmi
= Mzi(1 < i ≤ r)

and

Vi = (I ⊗Wi), (i ∈ Ḡ)

for inner functions Φ and Ψ, depend only on z1 variable, in H∞B(KG)(Dr) with Φ(z)Ψ(z) = z1

and a Hilbert space KG containing HG and for unitaries Wi on HG.
Moreover, one also has

(I ⊗ ΓG)ΠGT
∗
1 = M∗

Φ(I ⊗ ΓG)ΠG, and (I ⊗ ΓG)ΠGT
∗
n = M∗

Ψ(I ⊗ ΓG)ΠG.

Proof. We first define several unitaries which will make a way to define the n-tuple of con-
tractions (V1, . . . , Vn). Since Tj is a co-isometry, then

TjD
2
T̂1,G

T ∗j =
∑
F⊂G

(−1)|F |(T̂1(G))FTjT
∗
j (T̂1(G))∗F = D2

T̂1,G

and

TjD
2
T̂n,G

T ∗j =
∑
F⊂G

(−1)|F |(T̂n(G))FTjT
∗
j (T̂n(G))∗F = D2

T̂n,G
,

for all j ∈ Ḡ. Then by Douglas’ lemma, for all j ∈ Ḡ, there exist co-isometries Wj,1 : DT̂1,G
→

DT̂1,G
and Wj,n : DT̂n,G

→ DT̂n,G
such that

W ∗
j,1DT̂1,G

h = DT̂1,G
T ∗j h and W ∗

j,nDT̂n,G
h = DT̂n,G

T ∗j h (h ∈ H).

Let the commuting tuple of unitaries {W ′
j,n : j ∈ Ḡ} on Kn,G ⊇ DT̂n,G

be the minimal unitary

co-extension of the tuple of commuting co-isometries {Wj,n : j ∈ Ḡ} and let the commuting
tuple of unitaries {W ′

j,1 : j ∈ Ḡ} on K1,G ⊇ DT̂1,G
be the minimal unitary co-extension of the

commuting tuple of co-isometries {Wj,1 : j ∈ Ḡ}. Set

W ′
j := W ′

j,n ⊕W
′

j,1 (j ∈ Ḡ) and K′G := Kn,G ⊕K1,G.

Then the commuting tuple of unitaries {W ′
j : j ∈ Ḡ} on K′G is the minimal unitary co-

extension of {Wj,n ⊕Wj,1 : j ∈ Ḡ}. Now the identity, as noted in (3.2),

D2
T̂n,G

+ T1D
2
T̂1,G

T ∗1 = D2
T̂1n,G

= D2
T̂1,G

+ TnD
2
T̂n,G

T ∗n

implies that there exist an isometry ΓG : DT̂1n,G
→ K′G and a unitary

U ′ : QG := {(DT̂n,G
h,DT̂1,G

T ∗1 h) : h ∈ H} → Q̃G := {(DT̂n,G
T ∗nh,DT̂1,G

h) : h ∈ H}
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such that

(3.4) ΓG(DT̂1n,G
h) = (DT̂n,G

h,DT̂1,G
T ∗1 h), (h ∈ H)

and

U ′(DT̂n,G
h,DT̂1,G

T ∗1 h) = (DT̂n,G
T ∗nh,DT̂1,G

h) (h ∈ H).

By the construction, note that QG and Q̃G are joint {W ′∗
j : j ∈ Ḡ}-invariant subspaces and a

straightforward calculation shows that U
′
intertwines the tuple of isometries {W ′∗

j |QG
: j ∈ Ḡ}

and {W ′∗
j |Q̃G

: j ∈ Ḡ}, that is

(3.5) U ′W
′∗
j |QG

= (W
′∗
j |Q̃G

)U ′ (j ∈ Ḡ).

LetHG ⊆ K
′
G and H̃G ⊆ K

′
G be the smallest joint {W ′

j : j ∈ Ḡ} reducing subspaces containing

QG and Q̃G, respectively. More precisely,

HG =
∨

k∈Z|Ḡ|+ ,q∈QG

∏
j∈Ḡ

W
kj
j q and H̃G =

∨
k∈Z|Ḡ|+ ,q̃∈Q̃G

∏
j∈Ḡ

W
kj
j q̃.

Then {W ′∗
j |HG

: j ∈ Ḡ} and {W ′∗
j |H̃G

: j ∈ Ḡ} are the minimal unitary extension of {W ′∗
j |QG

:

j ∈ Ḡ} and {W ′∗
j |Q̃G

: j ∈ Ḡ}, respectively. By a well-known intertwining lifting theorem, we

extend U
′

to a unitary

U
′′

: HG → H̃G satisfying U
′′ |QG

= U
′

and

(3.6) U
′′
W
′∗
j |HG

= (W
′∗
j |H̃G

)U
′′

= W
′∗
j U

′′
(j ∈ Ḡ).

By adding an infinite dimensional Hilbert space K if necessary, we extend U
′′

further to get
a unitary

(3.7) U : KG → KG such that U |HG
= U ′′,

where KG := K′G ⊕K. We set

Wj := W
′

j |HG

for all j ∈ Ḡ. The stage is set and we now proceed to find the contractions with appropriate
properties.

First, we define

Vj := IH2(Dr) ⊗Wj (j ∈ Ḡ).
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Then Vj is a unitary on H2
HG

(Dr) and observe that for all h ∈ H,

(I ⊗W ∗
j )(I ⊗ ΓG)ΠGh = (I ⊗W ∗

j )(I ⊗ ΓG)
∑
k∈Zr

+

zk ⊗DT̂1n,G
T̂1n(G)∗kh

= (I ⊗W ∗
j )
∑
k∈Zr

+

zk ⊗ (DT̂n,G
T̂1n(G)∗kh, DT̂1,G

T̂1n(G)∗kT ∗1 h)

=
∑
k∈Zr

+

zk ⊗ (DT̂n,G
T̂1n(G)∗kT ∗j h, DT̂1,G

T̂1n(G)∗kT ∗1 T
∗
j h)

= (I ⊗ ΓG)ΠGT
∗
j h.

Therefore,

(3.8) (I ⊗ ΓG)ΠGT
∗
j = V ∗j (I ⊗ ΓG)ΠG.

for all j ∈ Ḡ. We now proceed towards finding contractions corresponding to j ∈ G. Since
ΠG is the canonical dilation map of T̂1n(G),

ΠGT
∗
1 T
∗
n = M∗

z1
ΠG and ΠGT

∗
mi

= M∗
zi

ΠG (1 < i ≤ r),

where (Mz1 , . . . ,Mzr) is the r-tuple of shifts on H2
DT̂1n,G

(Dr). Then setting

Vmi
:= Mzi on H2

HG
(Dr) (1 < i ≤ r)

and using the commuting property of M∗
zi

and (I ⊗ ΓG) we have,

(I ⊗ ΓG)ΠGT
∗
1 T
∗
n = M∗

z1
(I ⊗ ΓG)ΠG and (I ⊗ ΓG)ΠGT

∗
mi

= V ∗mi
(I ⊗ ΓG)ΠG (1 < i ≤ r).

Next we factor Mz1 , using Lemma 3.2, to obtain contractions corresponding to j = 1, n as
follows. Recall that KG = Kn,G ⊕ K1,G ⊕ K. Let P : KG → K1,G ⊕ K be the projection map
and ι1 : Kn,G ↪→ KG and ι2 : K1,G ⊕K ↪→ KG be the inclusion maps defined by

ι1(h) = (h, 0, 0), and ι2(k, k′) = (0, k, k′), (h ∈ Kn,G, k ∈ K1,G, k
′ ∈ K).

Then it is easy to see that [
P ι1
ι∗1 0

]
: KG ⊕Kn,G → KG ⊕Kn,G,

is a unitary, and therefore

U1 =

[
U∗ 0
0 I

] [
P ι1
ι∗1 0

]
=

[
U∗P U∗ι1
ι∗1 0

]
: KG ⊕Kn,G → KG ⊕Kn,G

is also a unitary, where U is the unitary as in (3.7). We now claim that U1 satisfies the

hypothesis of Lemma 3.2 with T = T̂1n(G) and F1 = DT̂n,G
. Indeed, for h ∈ H,

U1(ΓGDT̂1n,G
h,DT̂n,G

T ∗1 T
∗
nh) = U1(DT̂n,G

h,DT̂1,G
T ∗1 h, 0K, DT̂n,G

T ∗1 T
∗
nh)

= (U∗(DT̂n,G
T ∗1 T

∗
nh,DT̂1,G

T ∗1 h, 0K), DT̂n,G
h)

= (DT̂n,G
T ∗1 h,DT̂1,G

T ∗21 h, 0K, DT̂n,G
h)

= (ΓGDT̂1n,G
T ∗1 h,DT̂n,G

h).
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Similarly, one can check that the unitary

U2 =

[
P⊥ ι2
ι∗2 0

] [
U 0
0 I

]
=

[
P⊥U ι2
ι∗2U 0

]
: KG ⊕ (K1,G ⊕K)→ KG ⊕ (K1,G ⊕K),

satisfies

U2(ΓGDT̂1n,G
h,DT̂1,G

T ∗1 T
∗
nh, 0K) = (ΓGDT̂1n,G

T ∗nh,DT̂1,G
h, 0K),

for all h ∈ H. Therefore by Lemma 3.2, we have

(I ⊗ ΓG)ΠGT
∗
1 = M∗

Φ(I ⊗ ΓG)ΠG and (I ⊗ ΓG)ΠGT
∗
n = M∗

Ψ(I ⊗ ΓG)ΠG,

where

Φ(z) = (P + z1P
⊥)U and Ψ(z) = U∗(P⊥ + z1P ), (z ∈ Dr)

are inner multipliers, depend only on z1 variable, with

Φ(z)Ψ(z) = Ψ(z)Φ(z) = z1IKG
,

for all z ∈ Dr. Since ran(I ⊗ ΓG)ΠG ⊆ H2
HG

(Dr), we also have

(I ⊗ ΓG)ΠGT
∗
1 = V ∗1 (I ⊗ ΓG)ΠG and (I ⊗ ΓG)ΠGT

∗
n = V ∗n (I ⊗ ΓG)ΠG,

where

V1 = PH2
HG

(Dr)MΦ|H2
HG

(Dr) and Vn = PH2
HG

(Dr)MΨ|H2
HG

(Dr).

We pause for a moment and make a remark that even though MΦ and MΨ commute each
other, V1 and Vn does not necessarily commute. The reader must have observed that we have
obtained the n-tuple of contractions (V1, . . . , Vn) on H2

HG
(Dr) with the required intertwining

property. The proof will be complete if we show that V̂1 and V̂n are doubly commuting. We
only show that V̂n is doubly commuting as the proof for V̂1 is similar.

Since MΦ and Mzi on H2
KG

(Dr) doubly commute each other for all i = 2, . . . , r, it follows
that V1 and Vmi

doubly commute for all i = 2, . . . , r. It is obvious that Vmi
doubly commutes

with Vj for all i = 2, . . . , r and j ∈ Ḡ. Thus it remains to show that V1 commutes with Vj for
all j ∈ Ḡ. To this end, we first claim that

PHG
(PU)W ∗

j = W ∗
j PHG

(PU |HG
) and PHG

(P⊥U)W ∗
j = W ∗

j PHG
(P⊥U |HG

)

for all j ∈ Ḡ. Indeed, sinceHG is a joint {W ′∗
j : j ∈ Ḡ} reducing subspace then PHG

commutes

with W
′∗
j for all j ∈ Ḡ. Also by the construction

PW
′∗
j |K′G = W

′∗
j P |K′G .

Then, using the intertwining property (3.6), we have for all h ∈ HG and j ∈ Ḡ,

PHG
(PU)W ∗

j h = PHG
(PU

′′
)W

′∗
j h = PHG

PW
′∗
j U

′′
h = W

′∗
j PHG

PUh = W ∗
j PHG

PUh.
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This proves the first identity in the claim and the proof of the second identity is similar and
we left it for the reader. These identities, in turn, implies that

PH2
HG

(Dr)MΦ|H2
HG

(Dr)(I ⊗W ∗
j )|H2

HG
(Dr) =PH2

HG
(Dr)M(P+z1P⊥)U(I ⊗W ∗

j )|H2
HG

(Dr)

=PH2
HG

(Dr)M(PUW ∗j +z1P⊥UW ∗j )|H2
HG

(Dr)

=PH2
HG

(Dr)(I ⊗W ∗
j )PH2

HG
(Dr)M(PU+z1P⊥U)|H2

HG
(Dr)

=(I ⊗W ∗
j )PH2

HG
(Dr)MΦ|H2

HG
(Dr).

Thus V1 commutes with V ∗j and consequently, by Fuglede-Putnam, V1 commutes with Vj for

all j ∈ Ḡ. This completes the proof.
�

Remark 3.4. It should be noted that the canonical dilation map ΠG is not an isometry and
that is why the n-tuple of contractions V is not a co-extension of T . A word of caution is in
order regarding the n-tuple contractions V = (V1, . . . , Vn). The tuple V is not a commuting
tuple, in general, and the only trouble is that V1 and Vn do not commute each other. However,
(V0 = Mz1 , V1, . . . , Vn−1) on H2

HG
(Dr) is an n-tuple of commuting contractions with

(I ⊗ ΓG)ΠGT
∗
1 T
∗
n = M∗

z1
(I ⊗ ΓG)ΠG, and (I ⊗ ΓG)ΠGT

∗
i = V ∗i (I ⊗ ΓG)ΠG (1 ≤ i ≤ n− 1),

and also

(3.9) V ∗1 V0 = Vn and V ∗n V0 = V1.

Similar statement also can be made for the tuple (V0 = Mz1 , V2, . . . , Vn).

The situation for the case when 1 /∈ G is much simpler and we consider it in the next
lemma.

Lemma 3.5. Let T = (T1, . . . , Tn) ∈ Bn
1,n(H). Let G = {m1, . . . ,mr} ⊂ {1, . . . , n− 1} with

1 /∈ G and set Ḡ = {1, . . . , n − 1} r G. Suppose Tj is a co-isometry for all j ∈ Ḡ ∪ {n}.
Then there exist a Hilbert space HG ⊃ DT̂1n,G

and an n-tuple of commuting isometries V =

(V1, . . . , Vn) on H2
HG

(Dr) such that V̂1 and V̂n are doubly commuting and

ΠGT
∗
i = V ∗i ΠG (1 ≤ i ≤ n)

where ΠG : H → H2
DT̂1n,G

(Dr) ⊂ H2
HG

(Dr) is the canonical dilation map of T̂1n(G) and

Vmi
= Mzi(1 ≤ i ≤ r) and Vj = I ⊗ Uj (j ∈ Ḡ ∪ {n})

for some commuting unitaries Uj’s on HG.

Proof. Since Tj (j ∈ Ḡ) and Tn are co-isometries, a straight forward computation as done in
the proof of Lemma 3.3 yields

TjD
2
T,GT

∗
j = D2

T,G and TnD
2
T,GT

∗
n = D2

T,G.

Then, by Douglas’ lemma, there exist co-isometries Sj : DT,G → DT,G (j ∈ Ḡ) and Sn :
DT,G → DT,G such that

S∗jDT,Gh = DT,GT
∗
j h and S∗nDT,Gh = DT,GT

∗
nh,
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for all h ∈ H. Clearly {Sj : j ∈ Ḡ ∪ {n}} is a tuple of commuting co-isometries on DT,G. Let
the commuting tuple of unitaries {Uj : j ∈ Ḡ ∪ {n}} on HG ⊇ DT,G be the minimal unitary
co-extension of {Sj : j ∈ Ḡ∪{n}}. On the other hand, since ΠG : H → H2

DT,G
(Dr) ⊂ H2

HG
(Dr)

is the canonical dilation map of T̂1n(G) then

ΠGT
∗
mi

= M∗
zi

ΠG

for all i = 1 . . . , r. Also it is evident from the construction of Uj’s that

ΠGT
∗
j = (I ⊗ Uj)

∗ΠG

for all j ∈ Ḡ ∪ {n}. Set

Vmi
:= Mzi (1 ≤ i ≤ r) and Vj := I ⊗ Uj (j ∈ Ḡ ∪ {n}).

Then the n-tuple of commuting isometries V = (V1, . . . , Vn) has the required property. This
completes the proof. �

We need one more lemma which describes a canonical way to construct co-isometries out
of commuting contractions.

Lemma 3.6. Let T = (T1, . . . , Tn) ∈ T n(H). Let G ⊂ {1, . . . , n} and Ḡ = {1, . . . , n} r G.
Then there exist a positive operator Q : H → H and contractions T̃j : ranQ → ranQ
(1 ≤ j ≤ n) defined by

T̃ ∗j Qh = QT ∗j h, (h ∈ H)

such that T̃j is a co-isometry for all j ∈ Ḡ.

Proof. Since TḠ is a contraction, strong operator limit (SOT) of T n
Ḡ
T ∗n
Ḡ

exists as n→∞. Set

Q2 := SOT- lim
n→∞

T n
ḠT
∗n
Ḡ .

Since Tj is a contraction, it is easy to see that

TjQ
2T ∗j ≤ Q2,

for all j = 1 . . . , n. Consequently by Douglas’ lemma, for each 1 ≤ j ≤ n, there exists a
contraction T̃j : ranQ→ ranQ such that

T̃ ∗j Qh = QT ∗j h (h ∈ H).

Moreover, for all j ∈ Ḡ,

Q2 ≥ TjQ
2T ∗j = SOT- lim

n→∞
T n
ḠTjT

∗
j T
∗n
Ḡ ≥ SOT- lim

n→∞
T n+1
Ḡ

T
∗(n+1)

Ḡ
= Q2,

that is

TjQ
2T ∗j = Q2.

Hence T̃j is a co-isometry for all j ∈ Ḡ. This completes the proof. �

Combining the above lemmas we now find co-extensions for n-tuples in Bn
1,n(H).
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Proposition 3.7. Let T = (T1, . . . , Tn) ∈ Bn
1,n(H). Then for each G ⊆ {1, . . . , n− 1} there

exist a Hilbert space HG and contractions VG,1, . . . , VG,n on H2
HG

(D|G|) such that

ΠT ∗j =
(⊕

G

V ∗G,j

)
Π, (1 ≤ j ≤ n)

where Π : H →
⊕

GH
2
HG

(D|G|) is an isometry and by convention H2
H∅(D

|∅|) := H∅.
Moreover, if we set Vj :=

⊕
G VG,j for all j = 1, . . . , n and V = (V1, . . . , Vn) then V̂1 and

V̂n are doubly commuting and Vj is an isometry for all j = 2, . . . , n− 1.

Proof. As usual, we shall work on the (n − 1)-tuple T̂1n ∈ Bn−1(H). Let us fix G =
{m1, . . . ,m|G|} ⊆ {1, . . . , n − 1} and set Ḡ = {1, . . . , n − 1} r G. Let QG : H → H be
the positive operator defined by

Q2
G := SOT- lim

m→∞
(T̂1n(Ḡ))m(T̂1n(Ḡ))∗m.

Then, by Lemma 3.6, we have a contraction Sj : ranQG → ranQG defined by

S∗jQGh = QGT
∗
j h, (h ∈ H)

for all j = 1, . . . , n so that Sj is a co-isometry for all j ∈ Ḡ. In the case when 1 ∈ Ḡ, both S1

and Sn are co-isometries because their product S1Sn is a co-isometry. We claim that

S := (S1, . . . , Sn) ∈ Bn
1,n(ranQG).

Indeed, the claim follows from the fact that if
∑

F⊂G′(−1)|F |(T̂1n)F (T̂1n)∗F ≥ 0 for some G′ ⊂
{1, . . . , n− 1} then∑
F⊂G′

(−1)|F |(T̂1n)FQ
2
G(T̂1n)∗F = SOT- lim

m→∞
T̂1n(Ḡ)m

( ∑
F⊂G′

(−1)|F |(T̂1n)F (T̂1n)∗F

)
T̂1n(Ḡ)∗m ≥ 0,

and the later positivity is equivalent to the positivity of
∑

F⊂G′(−1)|F |(Ŝ1n)F (Ŝ1n)∗F . Next we
apply Lemma 3.3 and Lemma 3.5 for the tuple S := (S1, . . . , Sn) ∈ Bn

1,n(ranQG), to obtain
the building blocks of the co-extension we are after. We consider the following two cases.

Case I: Suppose 1 = m1 ∈ G. Since Sj (j ∈ Ḡ) are co-isometries, then by Lemma 3.3,
there exist a Hilbert space HG, an isometry ΓG : DŜ1n,G

→ HG and n-tuple of contractions

V = (VG,1, . . . , VG,n) on H2
HG

(D|G|) such that V̂1 and V̂n are doubly commuting and

(I ⊗ ΓG)Π̃GS
∗
i = V ∗G,i(I ⊗ ΓG)Π̃G, (1 ≤ i ≤ n)

where Π̃G : ranQG → H2
DŜ1n,G

(D|G|) is the canonical dilation map of Ŝ1n(G). Now using the

identity S∗jQG = QGT
∗
j and setting

ΠG := Π̃GQG,

we have that

(3.10) (I ⊗ ΓG)ΠGT
∗
i = V ∗G,i(I ⊗ ΓG)ΠG, (1 ≤ i ≤ n)
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where (I ⊗ ΓG)ΠG : H → H2
HG

(D|G|) is a contraction with

‖(I ⊗ ΓG)ΠGh‖2 = lim
k→∞

∑
F⊂G

(−1)|F |
∥∥(Ŝ1n

)∗k
F
QGh

∥∥2

= lim
k→∞

∑
F⊂G

(−1)|F |‖QG(T̂1n)∗kF h‖2,

for all h ∈ H.
Case II: Suppose 1 /∈ G. In such a case, Sj is a co-isometry for all j ∈ Ḡ ∪ {n} and

therefore, by Lemma 3.5, there exist a Hilbert space HG and commuting n-tuple of isometries
V ′ = (VG,1, . . . , VG,n) on H2

HG
(D|G|) such that V̂ ′1 and V̂ ′n are doubly commuting and

Π̃GS
∗
i = V ∗G,iΠ̃G (1 ≤ i ≤ n)

where Π̃G : ranQG → H2
HG

(D|G|) is the canonical dilation map of Ŝ1n(G). Again using the
identity S∗jQG = QGT

∗
j and setting

ΠG := Π̃GQG,

we get

(3.11) ΠGT
∗
i = V ∗G,iΠG, (1 ≤ i ≤ n)

and for all h ∈ H,

‖ΠGh‖2 = lim
k→∞

∑
F⊂G

(−1)|F |‖QG(T̂1n)∗kF h‖2.

Now we combine all the intertwining maps, obtained in the above two cases, together to
obtain a co-extension. Define Π : H →

⊕
GH

2
HG

(D|G|) by

Π(h)(G) =

{
(I ⊗ ΓG)ΠGh 1 ∈ G

ΠGh otherwise
, (h ∈ H, G ⊂ {1, . . . , n− 1})

where Π(h)(G) denotes the G-th coordinate of Π(h). Then by (3.10) and (3.11), it follows
that

ΠT ∗j = (
⊕
G

V ∗G,j)Π

for all j = 1, . . . , n. Note that if Π is an isometry then the above identity gives a co-extension
of T . To show Π is an isometry, for any h ∈ H, we compute

‖Πh‖2 =
∑

G⊂{1,...,n−1}

‖ΠGh‖2 (as ΓG’s are isometry)

=
∑

G⊂{1,...,n−1}

lim
k→∞

∑
F⊂G

(−1)|F |‖QG(T̂1n)∗kF h‖2

=
∑

G⊂{1,...,n−1}

∑
F⊂G

(−1)|F | lim
k→∞

‖T ∗kḠ (T̂1n)∗kF h‖2

=
∑

A⊂{1,...,n−1}

lim
k→∞

‖T ∗kA h‖2
∑
F⊂A

(−1)|F |.



DILATION UNDER BREHMER POSITIVITY 17

For each subset A 6= ∅ one can see that
∑

F⊂A(−1)|F | = 0. So ‖Πh‖2 = ‖h‖2 for all h ∈ H
and hence Π is an isometry. The moreover part is now clear from the construction of VG,j’s.
This completes the proof. �

We make several important remarks about the above proposition and these observations
will be used to prove the main theorem below.

Remarks 3.8. (i) The main drawback of the above proposition is that the co-extension V
of T is not a commuting tuple of contractions (see Remark 3.4 ). As noted earlier, the only
problem is that V1 and Vn do not commute each other. However, there are several things which
are nice and help us to work further to find isometric dilation of T . For example, Vj is an
isometry for all j = 2, . . . , n− 1 and if we set

V0 =
⊕
G

VG,0 ∈ B
(⊕

G

H2
HG

(D|G|)
)
, where VG,0 =

{
Mz1 1 ∈ G

VG,1VG,n otherwise
,

then V0 is an isometry, (V0, V1, . . . , Vn−1) is an n-tuple of commuting contractions with

ΠT ∗1 T
∗
n = V ∗0 Π and ΠT ∗j = V ∗j Π (1 ≤ j ≤ n− 1).

and, in view of (3.9),

(3.12) V ∗1 V0 = Vn and V ∗n V0 = V1.

Another crucial fact is that (V1, . . . , Vn−1) and (V0, V2, . . . , Vn−1) are doubly commuting. In
other words, the doubly commuting tuple (V2, . . . , Vn−1) doubly commute with both V0 and
V1. Needless to say that a similar statement also can be made about the commuting tuple of
contractions (V0, V2, . . . , Vn).

(ii) If Q := ran Π, then Q is a joint (V ∗0 , V
∗

1 , . . . , V
∗
n )-invariant subspace of

⊕
GH

2
HG

(D|G|),
(PQV1|Q, . . . , PQVn|Q) is an n-tuple of commuting contractions and

(T1, . . . , Tn) ∼= (PQV1|Q, . . . , PQVn|Q).

Moreover,
(PQV1|Q)(PQVn|Q) = (PQVn|Q)(PQV1|Q) = PQV0|Q.

We now find isometric dilations of operator tuples in Bn
1,n(H), which is the main theorem

of this article.

Theorem 3.9. Let T = (T1, . . . , Tn) ∈ Bn
1,n(H). Then T has an isometric dilation W =

(W1, . . . ,Wn) such that Ŵ1 and Ŵn are ∗-regular isometric dilations of T̂1 and T̂n, respectively.

Proof. Let Π, (VG,1, . . . , VG,n) on H2
HG

(D|G|) and V = (V1, . . . , Vn) be as in Proposition 3.7.
Then V = (V1, . . . , Vn) is a co-extension of T , that is

ΠT ∗j = V ∗j Π (1 ≤ j ≤ n)

where Vj =
⊕

G VG,j for all j = 1, . . . , n. We set

V0 :=
⊕
G

VG,0 ∈ B
(⊕

G

H2
HG

(D|G|)
)
, where VG,0 =

{
Mz1 1 ∈ G

VG,1VG,n otherwise
.
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As we have noted in Remark 3.8, (V0, V1 . . . , Vn−1) is a commuting tuple with Vi’s are isometry
except V1 and the doubly commuting tuple (V2, . . . , Vn−1) doubly commute with both V0 and
V1. Since V0 is an isometry, then the pair (V0, V1) has a regular unitary dilation (W0,W1) on
K. Then by Lemma 2.1, we extends Vj to an isometry Wj on K, for all j = 2, . . . , n − 1,
such that the tuple (W0,W1, . . . ,Wn−1) on K is an isometric dilation of (V0, V1, . . . , Vn−1) on⊕

GH
2
HG

(D|G|). Set

Wn := W ∗
1W0.

Then clearly (W1, . . . ,Wn) is a commuting tuple of isometries. We claim that (W1, . . . ,Wn)
is an isometric dilation of (PQV1|Q, . . . , PQVn|Q), where Q = ran Π. To prove the claim, let
k = (k1, . . . , kn) ∈ Zn

+ and let us denote X :=
⊕

GH
2
HG

(D|G|). We divide the proof of the
claim in the following two cases.

Case I: If kn ≥ k1, then

PXW
k1
1 · · ·W kn

n |X = PXW
kn
0 W

∗(kn−k1)
1 · · ·W kn−1

n−1 |X
= (PXW

∗(kn−k1)
1 W kn

0 |X )(W k2
2 · · ·W

kn−1

n−1 |X ) [WjX ⊂ X , j = 2, . . . , n− 1]

= V
∗(kn−k1)

1 V kn
0 V k2

2 · · ·V
kn−1

n−1 [(W0,W1)is a regular dilation of (V0, V1)]

= (V ∗1 V0)(kn−k1)V k1
0 V k2

2 · · ·V
kn−1

n−1

= V (kn−k1)
n V k1

0 V k2
2 · · ·V

kn−1

n−1 , [by (3.12)]

and therefore using the fact that Q ⊂ X is a joint (V ∗0 , V
∗

1 , . . . , V
∗
n )-invariant subspace

PQW
k1
1 · · ·W kn

n |Q = PQV
(kn−k1)
n V k1

0 V k2
2 · · ·V

kn−1

n−1 |Q
= (PQVn|Q)(kn−k1)(PQV0|Q)k1(PQV2|Q)k2 · · · (PQVn−1|Q)kn−1

= (PQV1|Q)k1 · · · (PQVn|Q)kn .

Here for the last equality we have used that PQV0|Q = (PQV1|Q)(PQVn|Q).
Case II: If k1 > kn, then

PXW
k1
1 · · ·W kn

n |X = PXW
kn
0 W k1−kn

1 · · ·W kn−1

n−1 |X
= V kn

0 V k1−kn
1 · · ·V kn−1

n−1 ,

and therefore,

PQW
k1
1 · · ·W kn

n |Q = PQV
kn

0 V k1−kn
1 · · ·V kn−1

n−1 |Q
= (PQV1|Q)k1 · · · (PQVn|Q)kn .

This proves the claim. On the other hand, we have already observed in Remark 3.8 that

(T1, . . . , Tn) ∼= (PQV1|Q, . . . , PQVn|Q).

Hence (W1, . . . ,Wn) is an isometric dilation of (T1, . . . , Tn). Since the tuple (W2, . . . ,Wn−1)
is a co-extension of (V2, . . . , Vn−1) and (V2, . . . , Vn−1) is a co-extension of (T2, . . . , Tn−1),

(W2, . . . ,Wn−1) is a co-extension of (T2, . . . , Tn−1). Finally since Ŵ1 and Ŵn are tuples of
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doubly commuting isometries, it follows that Ŵ1 and Ŵn are ∗-regular isometric dilation of
T̂1 and T̂n, respectively. This completes the proof.

�

Few remarks are in order.

Remarks 3.10. (i) The converse of the above theorem is true. That is, if T ∈ T n(H) has an

isometric dilation W ∈ T n(K) so that Ŵ1 and Ŵn are ∗-regular isometric dilation of T̂1 and

T̂2 respectively, then T ∈ Bn
1,n(H). This immediately follows from the fact that an operator

tuple satisfies Brehmer positivity if and only if it has a ∗-regular isometric dilation.
(ii) If T ∈ Bn

p,q(H) then interchanging Tp with T1 and Tq with Tn we can assume T ∈
Bn

1,n(H). So, Theorem 3.9 provides dilations for tuples in Bn
p,q(H).

(iii) If T ∈ Bn
1,n(H) such that T̂n is pure then T is also a member of the class T n

1,n(H)

(see (1.1)) considered in [4]. Note that in this case T̂1n is also a pure tuple. Then the positive
operator QG, defined in the proof of Proposition 3.7, is 0 for all G ( {1, . . . , n − 1} and
QG = IH for G = {1, . . . , n− 1}. This implies ΠG = 0 for all G ( {1, . . . , n− 1} and ΠG is
an isometry for G = {1, . . . , n−1}. Then it follows from Lemma 3.3 and Proposition 3.7 that
the commuting tuple of isometries (MΦ,Mz2 , . . . ,Mzn−1 ,MΨ) on H2

KG
(Dn−1) is a co-extension

of T . Thus we recover the isometric dilations obtained in [4] for such tuples.

We end the section with the von Neumann inequality for Bn
p,q(H). Recall that, if an n-tuple

of commuting contraction has an isometric dilation then it satisfies von Neumann inequality.
So we have the following theorem as an immediate consequence of Theorem 3.9.

Theorem 3.11. Let T ∈ Bn
r,q(H) with 1 ≤ r < q ≤ n. Then,

‖p(T )‖B(H) ≤ sup
z∈Dn

|p(z)|

for all p ∈ C[z1, . . . , zn].
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